

BACKGROUND

2004

OMA/LMN - Rem Koolhaas &

Joshua Prince-Ramus

Magnusson Klemencic

362,987 sf.

\$169.2 mil

Redefine Library

Form by Program

THE STRUCTURAL SYSTEM

Concrete base and shear walls

Beam-columns

Platforms and mega-trusses

Some traditional framing

CONNECTIONS

Diagrid

Non-vertical Faces

2 support connections per diamond

Setting blocks

Mullion system - screw-within-a-screw connect

Vertical Faces

Structural

No seismic steel

Deeper aluminum

Armatures

Threaded rod attachments

CONNECTIONS

Slanted Columns

Pinned connection at bottom

Welded connection to diagrid structure

Afterthought - cut and welded on site

LATERAL COMPONENTS

Diagrid

Beam columns

Non-symmetrical - offset floors result in twisting

LOAD TRANSFER

Shear walls and lower column grid

on the northwest corner

transfer loads down to foundation

LOAD TRANSFER

Central loads

down elevator core and vertical columns

Other loads and thrust from beam columns

carried to platform edges, down mega trusses, out to diagrid

Gravity Loads

Loads Distribute

Axial Loads Diagram

Bending Moment Diagram

Shear Diagram

Wind Loads

Find the wind speed according to the ASCE -7-05 Chapter 6

Total lateral load from one side = $7.6 \text{ lb/ft2}^{*} 24145 \text{ ft2/4} = 47775.5 \text{ lb}$

Distributed load along the edge= 47775.5 lb / 174 ft = 275 lb/ft

Main Wind Force Resisting System – Method 1								h ≤ 60 ft.					
Figure 6-2 (cont'd)			Design Wind Pressures					Walls & Roofs					
Enclosed Buildings													
Sim	plified D	esi	gn Win	d Pres	sure, p) _{s30} (ps			h = 30 ft	$K_{zt} = 1$.0, with I	= 1.0)	
Basic Wind Speed (mph)	Roof Angle (degrees)	Load Case	Horizontal Pressures					Zones Vertical Pressures				Overhangs	
			Α	В	С	D	E	F	G	Н	Еон	Gон	
85	0 to 5°	1	11.5	-5.9	7.6	-3.5	-13.8	-7.8	-9.6	-6.1	-19.3	-15.1	
	10°	1	12.9	-5.4	8.6	-3.1	-13.8	-8.4	-9.6	-6.5	-19.3	-15.1	
	15°	1	14.4	-4.8	9.6	-2.7	-13.8	-9.0	-9.6	-6.9	-19.3	-15.1	
	20°	1	15.9	-4.2	10.6	-2.3	-13.8	-9.6	-9.6	-7.3	-19.3	-15.1	
	25°	1 2	14.4	2.3	10.4	2.4	-6.4 -2.4	-8.7 -4.7	-4.6 -0.7	-7.0 -3.0	-11.9	-10.1	
	30 to 45	1	12.9	8.8	10.2	7.0	1.0	-7.8	0.3	-6.7	-4.5	-5.2	

Wind Loads

Loads Distribute

Axial Loads Diagram

Bending Moment Diagram

Shear Diagram

FOUNDATION SYSTEM

Soil Type - Seismic Site Class C

Shallow Foundation System

Mat-slab Foundations

Spread Footing Foundations

Mat-slab Foundations

Dimension: 44 ft * 65 ft

Location: Under stairway cores

Northwest corner: Combined Footings

Spread Footings

Elevation Change Follow the slope of site

FOUNDATION SYSTEM

Soil Bearing Pressure

$$\mathsf{q} = \frac{\mathsf{P}}{\mathsf{A}}$$

Where q = Soil bearing pressure

P = Load applied

A = Area of the footing

Spread Footings

Significant Factors:

Structure Load

Penetration

Frost heave & Shrink-swell

Allowable Bearing Pressure: 10000 psf

FOUNDATION SYSTEM

The 30x30 footing has an area of 900 ft². The soil capacity for Class C is 1,500 lb/ft².

Using the equation q=p/a we find p to be 1.3 Million lbs. This 1.3 Million lbs represents the maximum column load per footing.

The allowable bearing pressure per footing over most of the site is 10,000 lb/ft^2

Column Loads

SOURCES

http://www.matveyconstruction.com/foundation-repair/foundation-services/replace-repair-foundation.html https://en.wikiarquitectura.com/index.php/Seattle_Public_Library

https://lmnarchitects.com/case-study/seattle-central-library-curtain-wall-design

https://lmnarchitects.com/wp-content/uploads/2015/03/SPL_CivilEngineering_Mar2003_Web.pdf

https://meliskucuktunc.wordpress.com/2015/04/10/structural-analysis-seattle-public-library/

http://www.spl.org/locations/central-library/cen-building-facts

http://www.spl.org/prebuilt/cen_conceptbook/page2.htm

https://lmnarchitects.com/wp-content/uploads/2015/03/library_challenge.pdf

http://www.architectureweek.com/2007/1003/building_1-2.html

http://formativecomplexity.blogspot.com/2012/02/oma-seattle-public-library-globalized.html